This page allows you to examine the variables generated by the Edit Filter for an individual change.

Variables generated for this change

VariableValue
Edit count of the user (user_editcount)
null
Name of the user account (user_name)
'195.224.247.70'
Age of the user account (user_age)
0
Groups (including implicit) the user is in (user_groups)
[ 0 => '*' ]
Rights that the user has (user_rights)
[ 0 => 'createaccount', 1 => 'read', 2 => 'edit', 3 => 'createtalk', 4 => 'writeapi', 5 => 'viewmyprivateinfo', 6 => 'editmyprivateinfo', 7 => 'editmyoptions', 8 => 'abusefilter-log-detail', 9 => 'urlshortener-create-url', 10 => 'centralauth-merge', 11 => 'abusefilter-view', 12 => 'abusefilter-log', 13 => 'vipsscaler-test' ]
Whether or not a user is editing through the mobile interface (user_mobile)
false
Whether the user is editing from mobile app (user_app)
false
Page ID (page_id)
531014
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'Neutralization (chemistry)'
Full page title (page_prefixedtitle)
'Neutralization (chemistry)'
Edit protection level of the page (page_restrictions_edit)
[]
Last ten users to contribute to the page (page_recent_contributors)
[ 0 => 'ClueBot NG', 1 => '195.224.247.70', 2 => 'Eduartea', 3 => 'Vsmith', 4 => 'Ajayanand2', 5 => '51.155.19.253', 6 => 'PointlessUsername', 7 => '31.167.229.86', 8 => 'DoebLoggs', 9 => '37.224.106.113' ]
Page age in seconds (page_age)
635004542
Action (action)
'edit'
Edit summary/reason (summary)
''
Time since last page edit in seconds (page_last_edit_age)
44
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'{{short description|Chemical reaction in which an acid and a base react quantitatively}} [[File:Titolazione.gif|thumb|upright=1.25|Animation of a strong acid–strong base neutralization titration (using [[phenolphthalein]]). The equivalence point is marked in red.]] In chemistry, '''neutralization''' or '''neutralisation''' (see [[American and British English spelling differences|spelling differences]]) is a [[chemical reaction]] in which [[acid]] and a [[base (chemistry)|base]] react with an equivalent quantity of each other. In a reaction in water, neutralization results in there being no excess of hydrogen or hydroxide ions present in the solution. The [[pH]] of the neutralized solution depends on the acid strength of the reactants. == Meaning of "neutralization" == In the context of a [[chemical reaction]] the term neutralization is used for a reaction between an [[acid]] and a [[base (chemistry)|base]] or [[alkali]]. Historically, this reaction was represented as :acid + base (alkali) → salt + water <chem>\mathit{x}H_\mathit{y}A{} + \mathit{y}B(OH)_\mathit{x}{} -> B_\mathit{y}A_\mathit{x}{} + \mathit{xy}H2O</chem> For example: :HCl + NaOH → NaCl + H<sub>2</sub>O The statement is still valid as long as it is understood that in an aqueous solution the substances involved are subject to [[dissociated|dissociation]], which changes the ionization state of the substances. The arrow sign, →, is used because the reaction is complete, that is, neutralization is a quantitative reaction. A more general definition is based on [[Brønsted–Lowry acid–base theory]]. :AH + B → A + BH Electrical charges are omitted from generic expressions such as this, as each species A, AH, B, or BH may or may not carry an electrical charge. Neutralization of [[sulfuric acid]] provides a specific example. Two partial neutralization reactions are possible in this instance. :H<sub>2</sub>SO<sub>4</sub> + OH<sup>−</sup> → {{chem|HSO|4|−}} + H<sub>2</sub>O :{{chem|HSO|4|−}} + OH<sup>−</sup> → {{chem|SO|4|2−}} + H<sub>2</sub>O : Overall: H<sub>2</sub>SO<sub>4</sub> + 2 OH<sup>−</sup> → {{chem|SO|4|2−}}+ 2 H<sub>2</sub>O After an acid AH has been neutralized there are no molecules of the acid (or hydrogen ions produced by dissociation of the molecule) left in solution. When an acid is neutralized the amount of base added to it must be equal to the amount of acid present initially. This amount of base is said to be the [[equivalent (chemistry)|equivalent]] amount. In a titration of an acid with a base, the point of neutralization can also be called the [[equivalence point]]. The quantitative nature of the neutralization reaction is most conveniently expressed in terms of the [[concentration]]s of acid and alkali. At the equivalence point: :volume (acid) × concentration (H<sup>+</sup> ions from dissociation) = volume (base) × concentration (OH<sup>−</sup> ions) In general, for an acid AH<sub>''n''</sub> at concentration ''c''<sub>1</sub> reacting with a base B(OH)<sub>''m''</sub> at concentration ''c''<sub>2</sub> the volumes are related by: : ''n'' ''v''<sub>1</sub> ''c''<sub>1</sub> = ''m'' ''v''<sub>2</sub> ''c''<sub>2</sub> An example of a base being neutralized by an acid is as follows. :Ba(OH)<sub>2</sub> + 2 H<sup>+</sup> → Ba<sup>2+</sup> + 2 H<sub>2</sub>O The same equation relating the concentrations of acid and base applies. The concept of neutralization is not limited to reactions in solution. For example, the reaction of [[limestone]] with acid such as sulfuric acid is also a neutralization reaction. :[Ca,Mg]CO<sub>3</sub>{{abbr|(s)|solid}} + H<sub>2</sub>SO<sub>4</sub>{{abbr|(aq)|aqueous solution}} → (Ca<sup>2+</sup>, Mg<sup>2+</sup>){{abbr|(aq)|aqueous solution}} + {{chem|SO|4|2−}}{{abbr|(aq)|aqueous solution}} + CO<sub>2</sub>{{abbr|(g)|gas}} + H<sub>2</sub>O Such reactions are important in [[soil chemistry]]. == Strong acids and strong bases == A [[strong acid]] is one that is fully [[dissociation (chemistry)|dissociated]] in aqueous solution. For example, [[hydrochloric acid]], HCl, is a strong acid. :HCl{{abbr|(aq)|aqueous solution}} → H<sup>+</sup>{{abbr|(aq)|aqueous solution}} + Cl<sup>−</sup>{{abbr|(aq)|aqueous solution}} A [[strong base]] is one that is fully [[dissociation (chemistry)|dissociated]] in aqueous solution. For example, [[sodium hydroxide]], NaOH, is a strong base. :NaOH{{abbr|(aq)|aqueous solution}} → Na<sup>+</sup>{{abbr|(aq)|aqueous solution}} + OH<sup>−</sup>{{abbr|(aq)|aqueous solution}} Therefore, when a strong acid reacts with a strong base the neutralization reaction can be written as :H<sup>+</sup> + OH<sup>−</sup> → H<sub>2</sub>O For example, in the reaction between hydrochloric acid and sodium hydroxide the sodium and chloride ions, Na<sup>+</sup> and Cl<sup>−</sup> take no part in the reaction. The reaction is consistent with the Brønsted–Lowry definition because in reality the hydrogen ion exists as the [[hydronium ion]], so that the neutralization reaction may be written as :H<sub>3</sub>O<sup>+</sup> + OH<sup>−</sup> → H<sub>2</sub>O + H<sub>2</sub>O When a strong acid is neutralized by a strong base there are no excess hydrogen ions left in the solution. The solution is said to be [[Neutral solution|neutral]] as it is neither acidic nor alkaline. The [[pH]] of such a solution is close to a value of 7; the exact pH value is dependent on the temperature of the solution. Neutralization is an [[exothermic]] reaction. The standard [[enthalpy change]] for the reaction {{nowrap|H<sup>+</sup> + OH<sup>−</sup> → H<sub>2</sub>O}} is −57.30&nbsp;kJ/mol. ===Quantitative treatment=== The term ''fully dissociated'' is applied to a solute when the concentration of undissociated solute is below the [[detection limit]]s, that is, when the undissociated solute's concentration is too low to measured. Quantitatively, this is expressed as {{nowrap|log ''K'' < −2}}, or in some texts {{nowrap|log ''K'' < −1.76}}. This means that the value of the dissociation constant cannot be obtained from experimental measurements. The value can, however, be estimated theoretically. For example the value of {{nowrap|log ''K'' ≈ −6}} has been estimated for [[hydrogen chloride]] in aqueous solution at room temperature.<ref name="Trummal 3663–3669">{{Cite journal|last1=Trummal|first1=Aleksander|last2=Lipping|first2=Lauri|last3=Kaljurand|first3=Ivari|last4=Koppel|first4=Ilmar A.|last5=Leito|first5=Ivo|date=2016-05-06|title=Acidity of Strong Acids in Water and Dimethyl Sulfoxide|journal=The Journal of Physical Chemistry A|language=EN|volume=120|issue=20|pages=3663–3669|doi=10.1021/acs.jpca.6b02253|pmid=27115918|issn=1089-5639|bibcode=2016JPCA..120.3663T|s2cid=29697201 }}</ref> A chemical compound may behave as a strong acid in solution when its concentration is low and as a weak acid when its concentration is very high. [[Sulfuric acid]] is an example of such a compound. == Weak acids and strong bases == A [[weak acid]] HA is one that does not dissociate fully when it is dissolved in water. Instead an [[equilibrium chemistry|equilibrium]] mixture is formed: :HA + H<sub>2</sub>O {{eqm}} H<sub>3</sub>O<sup>+</sup> + A<sup>−</sup> [[Acetic acid]] is an example of a weak acid. The pH of the neutralized solution resulting from :HA + OH<sup>−</sup> → H<sub>2</sub>O + A<sup>−</sup> is not close to 7, as with a strong acid, but depends on the [[acid dissociation constant]], ''K''<sub>a</sub>, of the acid. The pH at the end-point or equivalence point in a titration may be calculated as follows. At the end-point the acid is completely neutralized so the analytical hydrogen ion concentration, ''T''<sub>H</sub>, is zero and the concentration of the conjugate base, A<sup>−</sup>, is equal to the analytical or formal concentration ''T''<sub>A</sub> of the acid: [A<sup>−</sup>] = ''T''<sub>A</sub>. When a solution of an acid, HA, is at [[chemical equilibrium|equilibrium]], by definition the concentrations are related by the expression :[A<sup>−</sup>][H<sup>+</sup>] = ''K''<sub>a</sub> [HA];{{pad|3em}}p''K''<sub>a</sub> = −[[Logarithm|log]] ''K''<sub>a</sub> The solvent (e.g. water) is omitted from the defining expression on the assumption that its concentration is very much greater than the concentration of dissolved acid, [H<sub>2</sub>O] ≫ ''T''<sub>A</sub>. The equation for mass-balance in hydrogen ions can then be written as :''T''<sub>H</sub> = [H<sup>+</sup>] + [A<sup>−</sup>][H<sup>+</sup>]/''K''<sub>a</sub> − {{sfrac|''K''<sub>w</sub>|[H<sup>+</sup>]}} [[File:weak acid titrations.png|thumb|upright=1.35|Titration curves for addition of a strong base to a weak acid with p''K''<sub>a</sub> of 4.85. The curves are labelled with the concentration of the acid.]] where ''K''<sub>w</sub> represents the [[Self-ionization of water|self-dissociation constant]] of water. Since ''K''<sub>w</sub> = [H<sup>+</sup>][OH<sup>−</sup>], the term {{sfrac|''K''<sub>w</sub>|[H<sup>+</sup>]}} is equal to [OH<sup>−</sup>], the concentration of hydroxide ions. At neutralization, ''T''<sub>H</sub> is zero. After multiplying both sides of the equation by [H<sup>+</sup>], it becomes :[H<sup>+</sup>]<sup>2</sup> + ''T''<sub>A</sub>[H<sup>+</sup>]<sup>2</sup>/''K''<sub>a</sub> − ''K''<sub>w</sub> = 0 and, after rearrangement and taking logarithms, :pH = {{sfrac|1|2}} p''K''<sub>w</sub> + {{sfrac|1|2}} log (1 + {{sfrac|''T''<sub>A</sub>|''K''<sub>a</sub>}}) With a dilute solution of the weak acid, the term 1 + {{sfrac|''T''<sub>A</sub>|''K''<sub>a</sub>}} is equal to {{sfrac|''T''<sub>A</sub>|''K''<sub>a</sub>}} to a good approximation. If p''K''<sub>w</sub> = 14, :pH = 7 + (p''K''<sub>a</sub> + log ''T''<sub>A</sub>)/2 This equation explains the following facts: *The pH at the end-point depends mainly on the strength of the acid, p''K''<sub>a</sub>. *The pH at the end-point is greater than 7 and increases with increasing concentration of the acid, ''T''<sub>A</sub>, as seen in the figure. In a [[titration]] of a weak acid with a strong base the pH rises more steeply as the end-point is approached. At the end-point, the slope of the curve of pH with respect to amount of titrant is a maximum. Since the end-point occurs at pH greater than 7, the most suitable [[pH indicator|indicator]] to use is one, like [[phenolphthalein]], that changes color at high pH.<ref>{{Cite book|title=Chemical Principles|url=https://archive.org/details/chemicalprincipl00zumd_674|url-access=limited|year=2009|publisher=Houghton Mifflin Company|location=New York|pages=[https://archive.org/details/chemicalprincipl00zumd_674/page/n341 319]–324|author=Steven S. Zumdahl|edition=6th}}</ref> == Weak bases and strong acids == The situation is analogous to that of weak acids and strong bases. :B + H<sub>3</sub>O<sup>+</sup> {{eqm}} BH<sup>+</sup> + H<sub>2</sub>O [[Amine]]s are examples of weak bases. The pH of the neutralized solution depends on the [[acid dissociation constant]] of the protonated base, p''K''<sub>a</sub>, or, equivalently, on the base association constant, p''K''<sub>b</sub>. The most suitable indicator to use for this type of titration is one, such as [[methyl orange]], that changes color at low pH. == Weak acids and weak bases == When a weak acid reacts with an equivalent amount of a weak base, :HA + B {{eqm}} A<sup>−</sup> + BH<sup>+</sup> complete neutralization does not always occur. The concentrations of the species in equilibrium with each other will depend on the [[equilibrium constant]], ''K'', for the reaction, which is defined as follows: :[A<sup>−</sup>][BH<sup>+</sup>] = ''K'' [HA][B]. The neutralization reaction can be considered as the difference of the following two acid dissociation reactions :HA {{eqm}} H<sup>+</sup> + A<sup>−</sup> {{pad|3em}}''K''<sub>a,A</sub> = [A<sup>−</sup>][H<sup>+</sup>]/[HA] :BH<sup>+</sup> {{eqm}} B + H<sup>+</sup> {{pad|3em}}''K''<sub>a,B</sub> = [B][H<sup>+</sup>]/[BH<sup>+</sup>] with the [[dissociation constant]]s ''K''<sub>a,A</sub> and ''K''<sub>a,B</sub> of the acids HA and BH<sup>+</sup>, respectively. Inspection of the reaction quotients shows that ''K'' = {{sfrac|''K''<sub>a,A</sub>|''K''<sub>a,B</sub>}}. A weak acid cannot always be neutralized by a weak base, and vice versa. However, for the neutralization of [[benzoic acid]] (''K''<sub>a,A</sub> = 6.5&nbsp;×&nbsp;10<sup>−5</sup>) with [[ammonia]] (''K''<sub>a,B</sub> = 5.6&nbsp;×&nbsp;10<sup>−10</sup> for [[ammonium]]), ''K'' = 1.2&nbsp;×&nbsp;10<sup>5</sup> >> 1, and more than 99% of the benzoic acid is converted to benzoate. == Applications == Chemical [[titration]] methods are used for analyzing acids or bases to determine the unknown [[concentration]]. Either a [[pH meter]] or a [[pH indicator]] which shows the point of neutralization by a distinct color change can be employed. Simple [[Stoichiometry|stoichiometric]] calculations with the known volume of the unknown and the known volume and [[Molar concentration|molarity]] of the added chemical gives the molarity of the unknown. In [[water treatment|wastewater treatment]], chemical neutralization methods are often applied to reduce the damage that an effluent may cause upon release to the environment. For pH control, popular chemicals include [[calcium carbonate]], [[calcium oxide]], [[magnesium hydroxide]], and [[sodium bicarbonate]]. The selection of an appropriate neutralization chemical depends on the particular application. There are many uses of neutralization reactions that are acid-alkali reactions. A very common use is [[antacid]] tablets. These are designed to neutralize excess [[gastric acid]] in the stomach ([[hydrochloric acid|HCl]]) that may be causing discomfort in the stomach or lower esophagus. This can also be remedied by the ingestion of [[sodium bicarbonate]] (NaHCO<sub>3</sub>). Sodium bicarbonate is also commonly used to neutralise acid spills in laboratories, as well as [[Chemical burn|acid burns]]. In chemical synthesis of nanomaterials, the heat of neutralization reaction can be used to facilitate the chemical reduction of metal precursors.<ref name="Yin 2016">{{cite journal|last1=Yin|first1=Xi|last2=Wu|first2=Jianbo|last3=Li|first3=Panpan|last4=Shi|first4=Miao|last5=Yang|first5=Hong|title=Self-Heating Approach to the Fast Production of Uniform Metal Nanostructures|journal=ChemNanoMat|date=January 2016|volume=2|issue=1|pages=37–41|doi=10.1002/cnma.201500123}}</ref> Also in the digestive tract, neutralization reactions are used when food is moved from the stomach to the intestines. In order for the nutrients to be absorbed through the intestinal wall, an alkaline environment is needed, so the pancreas produce an antacid bicarbonate to cause this transformation to occur. Another common use, though perhaps not as widely known, is in fertilizers and control of [[soil pH]]. [[Slaked lime]] ([[calcium hydroxide]]) or [[limestone]] ([[calcium carbonate]]) may be worked into soil that is too acidic for plant growth. Fertilizers that improve plant growth are made by neutralizing [[sulfuric acid]] (H<sub>2</sub>SO<sub>4</sub>) or [[nitric acid]] (HNO<sub>3</sub>) with [[ammonia]] gas (NH<sub>3</sub>), making [[ammonium sulfate]] or [[ammonium nitrate]]. These are salts utilized in the fertilizer. Industrially, a by-product of the burning of [[coal]], [[sulfur dioxide]] gas, may combine with water vapor in the air to eventually produce sulfuric acid, which falls as acid rain. To prevent the sulfur dioxide from being released, a device known as a scrubber gleans the gas from smoke stacks. This device first blows calcium carbonate into the combustion chamber where it decomposes into [[calcium oxide]] (lime) and carbon dioxide. This lime then reacts with the sulfur dioxide produced forming [[calcium sulfite]]. A suspension of lime is then injected into the mixture to produce a slurry, which removes the calcium sulfite and any remaining unreacted sulfur dioxide. == References == <references /> == Further reading == Neutralization is covered in most general chemistry textbooks. Detailed treatments may be found in textbooks on analytical chemistry such as *{{cite book |last=Skoog |first=D.A |author2=West, D.M.|author3= Holler, J.F.|author4= Crouch, S.R. |title=Fundamentals of Analytical Chemistry |publisher=Thomson Brooks/Cole |year=2004 |edition=8th |isbn=0-03-035523-0 }} Chapters 14, 15 and 16 Applications *{{cite book |title=Water Chemistry |last=Stumm |first=W. |author2=Morgan, J.J. |year=1996 |publisher=Wiley |location=New York |isbn=0-471-05196-9 |url-access=registration |url=https://archive.org/details/waterchemistry00snoerich }} *{{cite book |title=Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters |last=Snoeyink |first=V.L. |author2=Jenkins, D. |year=1980 |publisher=Wiley |location=New York |isbn=0-471-51185-4 }} *{{cite book |title=Chemical Oceanography |last=Millero |first=F.J. |edition=3rd |year=2006 |publisher=Taylor and Francis |location=London |isbn=0-8493-2280-4 }} *Metcalf & Eddy. ''Wastewater Engineering, Treatment and Reuse''. 4th ed. New York: McGraw-Hill, 2003. 526-532. {{Authority control}} [[Category:Acid–base chemistry]] [[Category:Chemical reactions]] [[Category:Water treatment]]'
New page wikitext, after the edit (new_wikitext)
'{{short description|Chemical reaction in which an acid and a base react quantitatively}} [[File:Titolazione.gif|thumb|upright=1.25|Animation of a strong acid–strong base neutralization titration (using [[phenolphthalein]]). The equivalence point is marked in red.]] In chemistry, '''neutralization''' or '''neutralisation''' (see [[American and British English spelling differences|spelling differences]]) is a [[chemical reaction]] in which [[acid]] and a [[base (chemistry)|base]] react with an equivalent quantity of each other. In a reaction in water, neutralization results in there being no excess of hydrogen or hydroxide ions present in the solution. The [[pH]] of the neutralized solution depends on the acid strength of the reactants. == Meaning of "neutralization" == In the context of a [[chemical reaction]] the term neutralization is used for a reaction between an [[acid]] and a [[base (chemistry)|base]] or [[alkali]]. Historically, this reaction was represented as :acid + base (alkali) → salt + water i like icecream <chem>\mathit{x}H_\mathit{y}A{} + \mathit{y}B(OH)_\mathit{x}{} -> B_\mathit{y}A_\mathit{x}{} + \mathit{xy}H2O</chem> For example: :HCl + NaOH → NaCl + H<sub>2</sub>O The statement is still valid as long as it is understood that in an aqueous solution the substances involved are subject to [[dissociated|dissociation]], which changes the ionization state of the substances. The arrow sign, →, is used because the reaction is complete, that is, neutralization is a quantitative reaction. A more general definition is based on [[Brønsted–Lowry acid–base theory]]. :AH + B → A + BH Electrical charges are omitted from generic expressions such as this, as each species A, AH, B, or BH may or may not carry an electrical charge. Neutralization of [[sulfuric acid]] provides a specific example. Two partial neutralization reactions are possible in this instance. :H<sub>2</sub>SO<sub>4</sub> + OH<sup>−</sup> → {{chem|HSO|4|−}} + H<sub>2</sub>O :{{chem|HSO|4|−}} + OH<sup>−</sup> → {{chem|SO|4|2−}} + H<sub>2</sub>O : Overall: H<sub>2</sub>SO<sub>4</sub> + 2 OH<sup>−</sup> → {{chem|SO|4|2−}}+ 2 H<sub>2</sub>O After an acid AH has been neutralized there are no molecules of the acid (or hydrogen ions produced by dissociation of the molecule) left in solution. When an acid is neutralized the amount of base added to it must be equal to the amount of acid present initially. This amount of base is said to be the [[equivalent (chemistry)|equivalent]] amount. In a titration of an acid with a base, the point of neutralization can also be called the [[equivalence point]]. The quantitative nature of the neutralization reaction is most conveniently expressed in terms of the [[concentration]]s of acid and alkali. At the equivalence point: :volume (acid) × concentration (H<sup>+</sup> ions from dissociation) = volume (base) × concentration (OH<sup>−</sup> ions) In general, for an acid AH<sub>''n''</sub> at concentration ''c''<sub>1</sub> reacting with a base B(OH)<sub>''m''</sub> at concentration ''c''<sub>2</sub> the volumes are related by: : ''n'' ''v''<sub>1</sub> ''c''<sub>1</sub> = ''m'' ''v''<sub>2</sub> ''c''<sub>2</sub> An example of a base being neutralized by an acid is as follows. :Ba(OH)<sub>2</sub> + 2 H<sup>+</sup> → Ba<sup>2+</sup> + 2 H<sub>2</sub>O The same equation relating the concentrations of acid and base applies. The concept of neutralization is not limited to reactions in solution. For example, the reaction of [[limestone]] with acid such as sulfuric acid is also a neutralization reaction. :[Ca,Mg]CO<sub>3</sub>{{abbr|(s)|solid}} + H<sub>2</sub>SO<sub>4</sub>{{abbr|(aq)|aqueous solution}} → (Ca<sup>2+</sup>, Mg<sup>2+</sup>){{abbr|(aq)|aqueous solution}} + {{chem|SO|4|2−}}{{abbr|(aq)|aqueous solution}} + CO<sub>2</sub>{{abbr|(g)|gas}} + H<sub>2</sub>O Such reactions are important in [[soil chemistry]]. == Strong acids and strong bases == A [[strong acid]] is one that is fully [[dissociation (chemistry)|dissociated]] in aqueous solution. For example, [[hydrochloric acid]], HCl, is a strong acid. :HCl{{abbr|(aq)|aqueous solution}} → H<sup>+</sup>{{abbr|(aq)|aqueous solution}} + Cl<sup>−</sup>{{abbr|(aq)|aqueous solution}} A [[strong base]] is one that is fully [[dissociation (chemistry)|dissociated]] in aqueous solution. For example, [[sodium hydroxide]], NaOH, is a strong base. :NaOH{{abbr|(aq)|aqueous solution}} → Na<sup>+</sup>{{abbr|(aq)|aqueous solution}} + OH<sup>−</sup>{{abbr|(aq)|aqueous solution}} Therefore, when a strong acid reacts with a strong base the neutralization reaction can be written as :H<sup>+</sup> + OH<sup>−</sup> → H<sub>2</sub>O For example, in the reaction between hydrochloric acid and sodium hydroxide the sodium and chloride ions, Na<sup>+</sup> and Cl<sup>−</sup> take no part in the reaction. The reaction is consistent with the Brønsted–Lowry definition because in reality the hydrogen ion exists as the [[hydronium ion]], so that the neutralization reaction may be written as :H<sub>3</sub>O<sup>+</sup> + OH<sup>−</sup> → H<sub>2</sub>O + H<sub>2</sub>O When a strong acid is neutralized by a strong base there are no excess hydrogen ions left in the solution. The solution is said to be [[Neutral solution|neutral]] as it is neither acidic nor alkaline. The [[pH]] of such a solution is close to a value of 7; the exact pH value is dependent on the temperature of the solution. Neutralization is an [[exothermic]] reaction. The standard [[enthalpy change]] for the reaction {{nowrap|H<sup>+</sup> + OH<sup>−</sup> → H<sub>2</sub>O}} is −57.30&nbsp;kJ/mol. ===Quantitative treatment=== The term ''fully dissociated'' is applied to a solute when the concentration of undissociated solute is below the [[detection limit]]s, that is, when the undissociated solute's concentration is too low to measured. Quantitatively, this is expressed as {{nowrap|log ''K'' < −2}}, or in some texts {{nowrap|log ''K'' < −1.76}}. This means that the value of the dissociation constant cannot be obtained from experimental measurements. The value can, however, be estimated theoretically. For example the value of {{nowrap|log ''K'' ≈ −6}} has been estimated for [[hydrogen chloride]] in aqueous solution at room temperature.<ref name="Trummal 3663–3669">{{Cite journal|last1=Trummal|first1=Aleksander|last2=Lipping|first2=Lauri|last3=Kaljurand|first3=Ivari|last4=Koppel|first4=Ilmar A.|last5=Leito|first5=Ivo|date=2016-05-06|title=Acidity of Strong Acids in Water and Dimethyl Sulfoxide|journal=The Journal of Physical Chemistry A|language=EN|volume=120|issue=20|pages=3663–3669|doi=10.1021/acs.jpca.6b02253|pmid=27115918|issn=1089-5639|bibcode=2016JPCA..120.3663T|s2cid=29697201 }}</ref> A chemical compound may behave as a strong acid in solution when its concentration is low and as a weak acid when its concentration is very high. [[Sulfuric acid]] is an example of such a compound. == Weak acids and strong bases == A [[weak acid]] HA is one that does not dissociate fully when it is dissolved in water. Instead an [[equilibrium chemistry|equilibrium]] mixture is formed: :HA + H<sub>2</sub>O {{eqm}} H<sub>3</sub>O<sup>+</sup> + A<sup>−</sup> [[Acetic acid]] is an example of a weak acid. The pH of the neutralized solution resulting from :HA + OH<sup>−</sup> → H<sub>2</sub>O + A<sup>−</sup> is not close to 7, as with a strong acid, but depends on the [[acid dissociation constant]], ''K''<sub>a</sub>, of the acid. The pH at the end-point or equivalence point in a titration may be calculated as follows. At the end-point the acid is completely neutralized so the analytical hydrogen ion concentration, ''T''<sub>H</sub>, is zero and the concentration of the conjugate base, A<sup>−</sup>, is equal to the analytical or formal concentration ''T''<sub>A</sub> of the acid: [A<sup>−</sup>] = ''T''<sub>A</sub>. When a solution of an acid, HA, is at [[chemical equilibrium|equilibrium]], by definition the concentrations are related by the expression :[A<sup>−</sup>][H<sup>+</sup>] = ''K''<sub>a</sub> [HA];{{pad|3em}}p''K''<sub>a</sub> = −[[Logarithm|log]] ''K''<sub>a</sub> The solvent (e.g. water) is omitted from the defining expression on the assumption that its concentration is very much greater than the concentration of dissolved acid, [H<sub>2</sub>O] ≫ ''T''<sub>A</sub>. The equation for mass-balance in hydrogen ions can then be written as :''T''<sub>H</sub> = [H<sup>+</sup>] + [A<sup>−</sup>][H<sup>+</sup>]/''K''<sub>a</sub> − {{sfrac|''K''<sub>w</sub>|[H<sup>+</sup>]}} [[File:weak acid titrations.png|thumb|upright=1.35|Titration curves for addition of a strong base to a weak acid with p''K''<sub>a</sub> of 4.85. The curves are labelled with the concentration of the acid.]] where ''K''<sub>w</sub> represents the [[Self-ionization of water|self-dissociation constant]] of water. Since ''K''<sub>w</sub> = [H<sup>+</sup>][OH<sup>−</sup>], the term {{sfrac|''K''<sub>w</sub>|[H<sup>+</sup>]}} is equal to [OH<sup>−</sup>], the concentration of hydroxide ions. At neutralization, ''T''<sub>H</sub> is zero. After multiplying both sides of the equation by [H<sup>+</sup>], it becomes :[H<sup>+</sup>]<sup>2</sup> + ''T''<sub>A</sub>[H<sup>+</sup>]<sup>2</sup>/''K''<sub>a</sub> − ''K''<sub>w</sub> = 0 and, after rearrangement and taking logarithms, :pH = {{sfrac|1|2}} p''K''<sub>w</sub> + {{sfrac|1|2}} log (1 + {{sfrac|''T''<sub>A</sub>|''K''<sub>a</sub>}}) With a dilute solution of the weak acid, the term 1 + {{sfrac|''T''<sub>A</sub>|''K''<sub>a</sub>}} is equal to {{sfrac|''T''<sub>A</sub>|''K''<sub>a</sub>}} to a good approximation. If p''K''<sub>w</sub> = 14, :pH = 7 + (p''K''<sub>a</sub> + log ''T''<sub>A</sub>)/2 This equation explains the following facts: *The pH at the end-point depends mainly on the strength of the acid, p''K''<sub>a</sub>. *The pH at the end-point is greater than 7 and increases with increasing concentration of the acid, ''T''<sub>A</sub>, as seen in the figure. In a [[titration]] of a weak acid with a strong base the pH rises more steeply as the end-point is approached. At the end-point, the slope of the curve of pH with respect to amount of titrant is a maximum. Since the end-point occurs at pH greater than 7, the most suitable [[pH indicator|indicator]] to use is one, like [[phenolphthalein]], that changes color at high pH.<ref>{{Cite book|title=Chemical Principles|url=https://archive.org/details/chemicalprincipl00zumd_674|url-access=limited|year=2009|publisher=Houghton Mifflin Company|location=New York|pages=[https://archive.org/details/chemicalprincipl00zumd_674/page/n341 319]–324|author=Steven S. Zumdahl|edition=6th}}</ref> == Weak bases and strong acids == The situation is analogous to that of weak acids and strong bases. :B + H<sub>3</sub>O<sup>+</sup> {{eqm}} BH<sup>+</sup> + H<sub>2</sub>O [[Amine]]s are examples of weak bases. The pH of the neutralized solution depends on the [[acid dissociation constant]] of the protonated base, p''K''<sub>a</sub>, or, equivalently, on the base association constant, p''K''<sub>b</sub>. The most suitable indicator to use for this type of titration is one, such as [[methyl orange]], that changes color at low pH. == Weak acids and weak bases == When a weak acid reacts with an equivalent amount of a weak base, :HA + B {{eqm}} A<sup>−</sup> + BH<sup>+</sup> complete neutralization does not always occur. The concentrations of the species in equilibrium with each other will depend on the [[equilibrium constant]], ''K'', for the reaction, which is defined as follows: :[A<sup>−</sup>][BH<sup>+</sup>] = ''K'' [HA][B]. The neutralization reaction can be considered as the difference of the following two acid dissociation reactions :HA {{eqm}} H<sup>+</sup> + A<sup>−</sup> {{pad|3em}}''K''<sub>a,A</sub> = [A<sup>−</sup>][H<sup>+</sup>]/[HA] :BH<sup>+</sup> {{eqm}} B + H<sup>+</sup> {{pad|3em}}''K''<sub>a,B</sub> = [B][H<sup>+</sup>]/[BH<sup>+</sup>] with the [[dissociation constant]]s ''K''<sub>a,A</sub> and ''K''<sub>a,B</sub> of the acids HA and BH<sup>+</sup>, respectively. Inspection of the reaction quotients shows that ''K'' = {{sfrac|''K''<sub>a,A</sub>|''K''<sub>a,B</sub>}}. A weak acid cannot always be neutralized by a weak base, and vice versa. However, for the neutralization of [[benzoic acid]] (''K''<sub>a,A</sub> = 6.5&nbsp;×&nbsp;10<sup>−5</sup>) with [[ammonia]] (''K''<sub>a,B</sub> = 5.6&nbsp;×&nbsp;10<sup>−10</sup> for [[ammonium]]), ''K'' = 1.2&nbsp;×&nbsp;10<sup>5</sup> >> 1, and more than 99% of the benzoic acid is converted to benzoate. == Applications == Chemical [[titration]] methods are used for analyzing acids or bases to determine the unknown [[concentration]]. Either a [[pH meter]] or a [[pH indicator]] which shows the point of neutralization by a distinct color change can be employed. Simple [[Stoichiometry|stoichiometric]] calculations with the known volume of the unknown and the known volume and [[Molar concentration|molarity]] of the added chemical gives the molarity of the unknown. In [[water treatment|wastewater treatment]], chemical neutralization methods are often applied to reduce the damage that an effluent may cause upon release to the environment. For pH control, popular chemicals include [[calcium carbonate]], [[calcium oxide]], [[magnesium hydroxide]], and [[sodium bicarbonate]]. The selection of an appropriate neutralization chemical depends on the particular application. There are many uses of neutralization reactions that are acid-alkali reactions. A very common use is [[antacid]] tablets. These are designed to neutralize excess [[gastric acid]] in the stomach ([[hydrochloric acid|HCl]]) that may be causing discomfort in the stomach or lower esophagus. This can also be remedied by the ingestion of [[sodium bicarbonate]] (NaHCO<sub>3</sub>). Sodium bicarbonate is also commonly used to neutralise acid spills in laboratories, as well as [[Chemical burn|acid burns]]. In chemical synthesis of nanomaterials, the heat of neutralization reaction can be used to facilitate the chemical reduction of metal precursors.<ref name="Yin 2016">{{cite journal|last1=Yin|first1=Xi|last2=Wu|first2=Jianbo|last3=Li|first3=Panpan|last4=Shi|first4=Miao|last5=Yang|first5=Hong|title=Self-Heating Approach to the Fast Production of Uniform Metal Nanostructures|journal=ChemNanoMat|date=January 2016|volume=2|issue=1|pages=37–41|doi=10.1002/cnma.201500123}}</ref> Also in the digestive tract, neutralization reactions are used when food is moved from the stomach to the intestines. In order for the nutrients to be absorbed through the intestinal wall, an alkaline environment is needed, so the pancreas produce an antacid bicarbonate to cause this transformation to occur. Another common use, though perhaps not as widely known, is in fertilizers and control of [[soil pH]]. [[Slaked lime]] ([[calcium hydroxide]]) or [[limestone]] ([[calcium carbonate]]) may be worked into soil that is too acidic for plant growth. Fertilizers that improve plant growth are made by neutralizing [[sulfuric acid]] (H<sub>2</sub>SO<sub>4</sub>) or [[nitric acid]] (HNO<sub>3</sub>) with [[ammonia]] gas (NH<sub>3</sub>), making [[ammonium sulfate]] or [[ammonium nitrate]]. These are salts utilized in the fertilizer. Industrially, a by-product of the burning of [[coal]], [[sulfur dioxide]] gas, may combine with water vapor in the air to eventually produce sulfuric acid, which falls as acid rain. To prevent the sulfur dioxide from being released, a device known as a scrubber gleans the gas from smoke stacks. This device first blows calcium carbonate into the combustion chamber where it decomposes into [[calcium oxide]] (lime) and carbon dioxide. This lime then reacts with the sulfur dioxide produced forming [[calcium sulfite]]. A suspension of lime is then injected into the mixture to produce a slurry, which removes the calcium sulfite and any remaining unreacted sulfur dioxide. == References == <references /> == Further reading == Neutralization is covered in most general chemistry textbooks. Detailed treatments may be found in textbooks on analytical chemistry such as *{{cite book |last=Skoog |first=D.A |author2=West, D.M.|author3= Holler, J.F.|author4= Crouch, S.R. |title=Fundamentals of Analytical Chemistry |publisher=Thomson Brooks/Cole |year=2004 |edition=8th |isbn=0-03-035523-0 }} Chapters 14, 15 and 16 Applications *{{cite book |title=Water Chemistry |last=Stumm |first=W. |author2=Morgan, J.J. |year=1996 |publisher=Wiley |location=New York |isbn=0-471-05196-9 |url-access=registration |url=https://archive.org/details/waterchemistry00snoerich }} *{{cite book |title=Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters |last=Snoeyink |first=V.L. |author2=Jenkins, D. |year=1980 |publisher=Wiley |location=New York |isbn=0-471-51185-4 }} *{{cite book |title=Chemical Oceanography |last=Millero |first=F.J. |edition=3rd |year=2006 |publisher=Taylor and Francis |location=London |isbn=0-8493-2280-4 }} *Metcalf & Eddy. ''Wastewater Engineering, Treatment and Reuse''. 4th ed. New York: McGraw-Hill, 2003. 526-532. {{Authority control}} [[Category:Acid–base chemistry]] [[Category:Chemical reactions]] [[Category:Water treatment]]'
Unified diff of changes made by edit (edit_diff)
'@@ -7,5 +7,5 @@ In the context of a [[chemical reaction]] the term neutralization is used for a reaction between an [[acid]] and a [[base (chemistry)|base]] or [[alkali]]. Historically, this reaction was represented as -:acid + base (alkali) → salt + water +:acid + base (alkali) → salt + water i like icecream <chem>\mathit{x}H_\mathit{y}A{} + \mathit{y}B(OH)_\mathit{x}{} -> B_\mathit{y}A_\mathit{x}{} + \mathit{xy}H2O</chem> '
New page size (new_size)
17372
Old page size (old_size)
17356
Size change in edit (edit_delta)
16
Lines added in edit (added_lines)
[ 0 => ':acid + base (alkali) → salt + water i like icecream' ]
Lines removed in edit (removed_lines)
[ 0 => ':acid + base (alkali) → salt + water' ]
Parsed HTML source of the new revision (new_html)
'<div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Chemical reaction in which an acid and a base react quantitatively</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Titolazione.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/8/8c/Titolazione.gif" decoding="async" width="260" height="300" class="mw-file-element" data-file-width="260" data-file-height="300" /></a><figcaption>Animation of a strong acid–strong base neutralization titration (using <a href="/wiki/Phenolphthalein" title="Phenolphthalein">phenolphthalein</a>). The equivalence point is marked in red.</figcaption></figure> <p>In chemistry, <b>neutralization</b> or <b>neutralisation</b> (see <a href="/wiki/American_and_British_English_spelling_differences" title="American and British English spelling differences">spelling differences</a>) is a <a href="/wiki/Chemical_reaction" title="Chemical reaction">chemical reaction</a> in which <a href="/wiki/Acid" title="Acid">acid</a> and a <a href="/wiki/Base_(chemistry)" title="Base (chemistry)">base</a> react with an equivalent quantity of each other. In a reaction in water, neutralization results in there being no excess of hydrogen or hydroxide ions present in the solution. The <a href="/wiki/PH" title="PH">pH</a> of the neutralized solution depends on the acid strength of the reactants. </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Meaning_of_&quot;neutralization&quot;"><span class="tocnumber">1</span> <span class="toctext">Meaning of "neutralization"</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Strong_acids_and_strong_bases"><span class="tocnumber">2</span> <span class="toctext">Strong acids and strong bases</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="#Quantitative_treatment"><span class="tocnumber">2.1</span> <span class="toctext">Quantitative treatment</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-4"><a href="#Weak_acids_and_strong_bases"><span class="tocnumber">3</span> <span class="toctext">Weak acids and strong bases</span></a></li> <li class="toclevel-1 tocsection-5"><a href="#Weak_bases_and_strong_acids"><span class="tocnumber">4</span> <span class="toctext">Weak bases and strong acids</span></a></li> <li class="toclevel-1 tocsection-6"><a href="#Weak_acids_and_weak_bases"><span class="tocnumber">5</span> <span class="toctext">Weak acids and weak bases</span></a></li> <li class="toclevel-1 tocsection-7"><a href="#Applications"><span class="tocnumber">6</span> <span class="toctext">Applications</span></a></li> <li class="toclevel-1 tocsection-8"><a href="#References"><span class="tocnumber">7</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-9"><a href="#Further_reading"><span class="tocnumber">8</span> <span class="toctext">Further reading</span></a></li> </ul> </div> <h2><span id="Meaning_of_.22neutralization.22"></span><span class="mw-headline" id="Meaning_of_&quot;neutralization&quot;">Meaning of "neutralization"</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Neutralization_(chemistry)&amp;action=edit&amp;section=1" title="Edit section: Meaning of &quot;neutralization&quot;"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <p>In the context of a <a href="/wiki/Chemical_reaction" title="Chemical reaction">chemical reaction</a> the term neutralization is used for a reaction between an <a href="/wiki/Acid" title="Acid">acid</a> and a <a href="/wiki/Base_(chemistry)" title="Base (chemistry)">base</a> or <a href="/wiki/Alkali" title="Alkali">alkali</a>. Historically, this reaction was represented as </p> <dl><dd>acid + base (alkali) → salt + water i like icecream</dd></dl> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\ce {{\mathit {x}}H_{\mathit {y}}A{}+{\mathit {y}}B(OH)_{\mathit {x}}{}-&gt;B_{\mathit {y}}A_{\mathit {x}}{}+{\mathit {xy}}H2O}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext class="MJX-tex-mathit" mathvariant="italic">x</mtext> </mrow> </mrow> <msubsup> <mtext>H</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext class="MJX-tex-mathit" mathvariant="italic">y</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mtext>A</mtext> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext class="MJX-tex-mathit" mathvariant="italic">y</mtext> </mrow> </mrow> <mtext>B</mtext> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mtext>OH</mtext> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext class="MJX-tex-mathit" mathvariant="italic">x</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo stretchy="false">&#x27F6;<!-- ⟶ --></mo> <msubsup> <mtext>B</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext class="MJX-tex-mathit" mathvariant="italic">y</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <msubsup> <mtext>A</mtext> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext class="MJX-tex-mathit" mathvariant="italic">x</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext class="MJX-tex-mathit" mathvariant="italic">xy</mtext> </mrow> </mrow> <msubsup> <mtext>H</mtext> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0pt" height="0pt" depth=".2em" /> </mrow> </msubsup> <mtext>O</mtext> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\ce {{\mathit {x}}H_{\mathit {y}}A{}+{\mathit {y}}B(OH)_{\mathit {x}}{}-&gt;B_{\mathit {y}}A_{\mathit {x}}{}+{\mathit {xy}}H2O}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/deddddd2b53a6d8b56bc4b9a7c7dbe68c10258b8" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:37.733ex; height:3.009ex;" alt="{\displaystyle {\ce {{\mathit {x}}H_{\mathit {y}}A{}+{\mathit {y}}B(OH)_{\mathit {x}}{}-&gt;B_{\mathit {y}}A_{\mathit {x}}{}+{\mathit {xy}}H2O}}}"></span> </p><p>For example: </p> <dl><dd>HCl + NaOH → NaCl + H<sub>2</sub>O</dd></dl> <p>The statement is still valid as long as it is understood that in an aqueous solution the substances involved are subject to <a href="/wiki/Dissociated" class="mw-redirect" title="Dissociated">dissociation</a>, which changes the ionization state of the substances. The arrow sign, →, is used because the reaction is complete, that is, neutralization is a quantitative reaction. A more general definition is based on <a href="/wiki/Br%C3%B8nsted%E2%80%93Lowry_acid%E2%80%93base_theory" title="Brønsted–Lowry acid–base theory">Brønsted–Lowry acid–base theory</a>. </p> <dl><dd>AH + B → A + BH</dd></dl> <p>Electrical charges are omitted from generic expressions such as this, as each species A, AH, B, or BH may or may not carry an electrical charge. Neutralization of <a href="/wiki/Sulfuric_acid" title="Sulfuric acid">sulfuric acid</a> provides a specific example. Two partial neutralization reactions are possible in this instance. </p> <dl><dd>H<sub>2</sub>SO<sub>4</sub> + OH<sup>−</sup> → <span class="chemf nowrap">HSO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span> + H<sub>2</sub>O</dd> <dd><span class="chemf nowrap">HSO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span> + OH<sup>−</sup> → <span class="chemf nowrap">SO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span> + H<sub>2</sub>O</dd> <dd>Overall: H<sub>2</sub>SO<sub>4</sub> + 2 OH<sup>−</sup> → <span class="chemf nowrap">SO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span>+ 2 H<sub>2</sub>O</dd></dl> <p>After an acid AH has been neutralized there are no molecules of the acid (or hydrogen ions produced by dissociation of the molecule) left in solution. </p><p>When an acid is neutralized the amount of base added to it must be equal to the amount of acid present initially. This amount of base is said to be the <a href="/wiki/Equivalent_(chemistry)" title="Equivalent (chemistry)">equivalent</a> amount. In a titration of an acid with a base, the point of neutralization can also be called the <a href="/wiki/Equivalence_point" title="Equivalence point">equivalence point</a>. The quantitative nature of the neutralization reaction is most conveniently expressed in terms of the <a href="/wiki/Concentration" title="Concentration">concentrations</a> of acid and alkali. At the equivalence point: </p> <dl><dd>volume (acid) × concentration (H<sup>+</sup> ions from dissociation) = volume (base) × concentration (OH<sup>−</sup> ions)</dd></dl> <p>In general, for an acid AH<sub><i>n</i></sub> at concentration <i>c</i><sub>1</sub> reacting with a base B(OH)<sub><i>m</i></sub> at concentration <i>c</i><sub>2</sub> the volumes are related by: </p> <dl><dd><i>n</i> <i>v</i><sub>1</sub> <i>c</i><sub>1</sub> = <i>m</i> <i>v</i><sub>2</sub> <i>c</i><sub>2</sub></dd></dl> <p>An example of a base being neutralized by an acid is as follows. </p> <dl><dd>Ba(OH)<sub>2</sub> + 2 H<sup>+</sup> → Ba<sup>2+</sup> + 2 H<sub>2</sub>O</dd></dl> <p>The same equation relating the concentrations of acid and base applies. The concept of neutralization is not limited to reactions in solution. For example, the reaction of <a href="/wiki/Limestone" title="Limestone">limestone</a> with acid such as sulfuric acid is also a neutralization reaction. </p> <dl><dd>[Ca,Mg]CO<sub>3</sub><abbr title="solid">(s)</abbr> + H<sub>2</sub>SO<sub>4</sub><abbr title="aqueous solution">(aq)</abbr> → (Ca<sup>2+</sup>, Mg<sup>2+</sup>)<abbr title="aqueous solution">(aq)</abbr> + <span class="chemf nowrap">SO<span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">2−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">4</sub></span></span></span><abbr title="aqueous solution">(aq)</abbr> + CO<sub>2</sub><abbr title="gas">(g)</abbr> + H<sub>2</sub>O</dd></dl> <p>Such reactions are important in <a href="/wiki/Soil_chemistry" title="Soil chemistry">soil chemistry</a>. </p> <h2><span class="mw-headline" id="Strong_acids_and_strong_bases">Strong acids and strong bases</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Neutralization_(chemistry)&amp;action=edit&amp;section=2" title="Edit section: Strong acids and strong bases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <p>A <a href="/wiki/Strong_acid" class="mw-redirect" title="Strong acid">strong acid</a> is one that is fully <a href="/wiki/Dissociation_(chemistry)" title="Dissociation (chemistry)">dissociated</a> in aqueous solution. For example, <a href="/wiki/Hydrochloric_acid" title="Hydrochloric acid">hydrochloric acid</a>, HCl, is a strong acid. </p> <dl><dd>HCl<abbr title="aqueous solution">(aq)</abbr> → H<sup>+</sup><abbr title="aqueous solution">(aq)</abbr> + Cl<sup>−</sup><abbr title="aqueous solution">(aq)</abbr></dd></dl> <p>A <a href="/wiki/Strong_base" class="mw-redirect" title="Strong base">strong base</a> is one that is fully <a href="/wiki/Dissociation_(chemistry)" title="Dissociation (chemistry)">dissociated</a> in aqueous solution. For example, <a href="/wiki/Sodium_hydroxide" title="Sodium hydroxide">sodium hydroxide</a>, NaOH, is a strong base. </p> <dl><dd>NaOH<abbr title="aqueous solution">(aq)</abbr> → Na<sup>+</sup><abbr title="aqueous solution">(aq)</abbr> + OH<sup>−</sup><abbr title="aqueous solution">(aq)</abbr></dd></dl> <p>Therefore, when a strong acid reacts with a strong base the neutralization reaction can be written as </p> <dl><dd>H<sup>+</sup> + OH<sup>−</sup> → H<sub>2</sub>O</dd></dl> <p>For example, in the reaction between hydrochloric acid and sodium hydroxide the sodium and chloride ions, Na<sup>+</sup> and Cl<sup>−</sup> take no part in the reaction. The reaction is consistent with the Brønsted–Lowry definition because in reality the hydrogen ion exists as the <a href="/wiki/Hydronium_ion" class="mw-redirect" title="Hydronium ion">hydronium ion</a>, so that the neutralization reaction may be written as </p> <dl><dd>H<sub>3</sub>O<sup>+</sup> + OH<sup>−</sup> → H<sub>2</sub>O + H<sub>2</sub>O</dd></dl> <p>When a strong acid is neutralized by a strong base there are no excess hydrogen ions left in the solution. The solution is said to be <a href="/wiki/Neutral_solution" class="mw-redirect" title="Neutral solution">neutral</a> as it is neither acidic nor alkaline. The <a href="/wiki/PH" title="PH">pH</a> of such a solution is close to a value of 7; the exact pH value is dependent on the temperature of the solution. </p><p>Neutralization is an <a href="/wiki/Exothermic" class="mw-redirect" title="Exothermic">exothermic</a> reaction. The standard <a href="/wiki/Enthalpy_change" class="mw-redirect" title="Enthalpy change">enthalpy change</a> for the reaction <span class="nowrap">H<sup>+</sup> + OH<sup>−</sup> → H<sub>2</sub>O</span> is −57.30&#160;kJ/mol. </p> <h3><span class="mw-headline" id="Quantitative_treatment">Quantitative treatment</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Neutralization_(chemistry)&amp;action=edit&amp;section=3" title="Edit section: Quantitative treatment"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h3> <p>The term <i>fully dissociated</i> is applied to a solute when the concentration of undissociated solute is below the <a href="/wiki/Detection_limit" title="Detection limit">detection limits</a>, that is, when the undissociated solute's concentration is too low to measured. Quantitatively, this is expressed as <span class="nowrap">log <i>K</i> &lt; −2</span>, or in some texts <span class="nowrap">log <i>K</i> &lt; −1.76</span>. This means that the value of the dissociation constant cannot be obtained from experimental measurements. The value can, however, be estimated theoretically. For example the value of <span class="nowrap">log <i>K</i> ≈ −6</span> has been estimated for <a href="/wiki/Hydrogen_chloride" title="Hydrogen chloride">hydrogen chloride</a> in aqueous solution at room temperature.<sup id="cite_ref-Trummal_3663–3669_1-0" class="reference"><a href="#cite_note-Trummal_3663–3669-1">&#91;1&#93;</a></sup> A chemical compound may behave as a strong acid in solution when its concentration is low and as a weak acid when its concentration is very high. <a href="/wiki/Sulfuric_acid" title="Sulfuric acid">Sulfuric acid</a> is an example of such a compound. </p> <h2><span class="mw-headline" id="Weak_acids_and_strong_bases">Weak acids and strong bases</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Neutralization_(chemistry)&amp;action=edit&amp;section=4" title="Edit section: Weak acids and strong bases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <p>A <a href="/wiki/Weak_acid" class="mw-redirect" title="Weak acid">weak acid</a> HA is one that does not dissociate fully when it is dissolved in water. Instead an <a href="/wiki/Equilibrium_chemistry" title="Equilibrium chemistry">equilibrium</a> mixture is formed: </p> <dl><dd>HA + H<sub>2</sub>O ⇌ H<sub>3</sub>O<sup>+</sup> + A<sup>−</sup></dd></dl> <p><a href="/wiki/Acetic_acid" title="Acetic acid">Acetic acid</a> is an example of a weak acid. The pH of the neutralized solution resulting from </p> <dl><dd>HA + OH<sup>−</sup> → H<sub>2</sub>O + A<sup>−</sup></dd></dl> <p>is not close to 7, as with a strong acid, but depends on the <a href="/wiki/Acid_dissociation_constant" title="Acid dissociation constant">acid dissociation constant</a>, <i>K</i><sub>a</sub>, of the acid. The pH at the end-point or equivalence point in a titration may be calculated as follows. At the end-point the acid is completely neutralized so the analytical hydrogen ion concentration, <i>T</i><sub>H</sub>, is zero and the concentration of the conjugate base, A<sup>−</sup>, is equal to the analytical or formal concentration <i>T</i><sub>A</sub> of the acid: [A<sup>−</sup>] = <i>T</i><sub>A</sub>. When a solution of an acid, HA, is at <a href="/wiki/Chemical_equilibrium" title="Chemical equilibrium">equilibrium</a>, by definition the concentrations are related by the expression </p> <dl><dd>[A<sup>−</sup>][H<sup>+</sup>] = <i>K</i><sub>a</sub> [HA];<span style="padding-left:3em;">&#160;</span>p<i>K</i><sub>a</sub> = −<a href="/wiki/Logarithm" title="Logarithm">log</a> <i>K</i><sub>a</sub></dd></dl> <p>The solvent (e.g. water) is omitted from the defining expression on the assumption that its concentration is very much greater than the concentration of dissolved acid, [H<sub>2</sub>O] ≫ <i>T</i><sub>A</sub>. The equation for mass-balance in hydrogen ions can then be written as </p> <dl><dd><i>T</i><sub>H</sub> = [H<sup>+</sup>] + [A<sup>−</sup>][H<sup>+</sup>]/<i>K</i><sub>a</sub> − <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac"><span class="tion"><span class="num"><i>K</i><sub>w</sub></span><span class="sr-only">/</span><span class="den">[H<sup>+</sup>]</span></span></span></dd></dl> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Weak_acid_titrations.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Weak_acid_titrations.png/300px-Weak_acid_titrations.png" decoding="async" width="300" height="274" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/f/f5/Weak_acid_titrations.png 1.5x" data-file-width="438" data-file-height="400" /></a><figcaption>Titration curves for addition of a strong base to a weak acid with p<i>K</i><sub>a</sub> of 4.85. The curves are labelled with the concentration of the acid.</figcaption></figure> <p>where <i>K</i><sub>w</sub> represents the <a href="/wiki/Self-ionization_of_water" title="Self-ionization of water">self-dissociation constant</a> of water. Since <i>K</i><sub>w</sub> = [H<sup>+</sup>][OH<sup>−</sup>], the term <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>K</i><sub>w</sub></span><span class="sr-only">/</span><span class="den">[H<sup>+</sup>]</span></span></span> is equal to [OH<sup>−</sup>], the concentration of hydroxide ions. At neutralization, <i>T</i><sub>H</sub> is zero. After multiplying both sides of the equation by [H<sup>+</sup>], it becomes </p> <dl><dd>[H<sup>+</sup>]<sup>2</sup> + <i>T</i><sub>A</sub>[H<sup>+</sup>]<sup>2</sup>/<i>K</i><sub>a</sub> − <i>K</i><sub>w</sub> = 0</dd></dl> <p>and, after rearrangement and taking logarithms, </p> <dl><dd>pH = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span></span> p<i>K</i><sub>w</sub> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span></span> log (1 + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>T</i><sub>A</sub></span><span class="sr-only">/</span><span class="den"><i>K</i><sub>a</sub></span></span></span>)</dd></dl> <p>With a dilute solution of the weak acid, the term 1 + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>T</i><sub>A</sub></span><span class="sr-only">/</span><span class="den"><i>K</i><sub>a</sub></span></span></span> is equal to <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>T</i><sub>A</sub></span><span class="sr-only">/</span><span class="den"><i>K</i><sub>a</sub></span></span></span> to a good approximation. If p<i>K</i><sub>w</sub> = 14, </p> <dl><dd>pH = 7 + (p<i>K</i><sub>a</sub> + log <i>T</i><sub>A</sub>)/2</dd></dl> <p>This equation explains the following facts: </p> <ul><li>The pH at the end-point depends mainly on the strength of the acid, p<i>K</i><sub>a</sub>.</li> <li>The pH at the end-point is greater than 7 and increases with increasing concentration of the acid, <i>T</i><sub>A</sub>, as seen in the figure.</li></ul> <p>In a <a href="/wiki/Titration" title="Titration">titration</a> of a weak acid with a strong base the pH rises more steeply as the end-point is approached. At the end-point, the slope of the curve of pH with respect to amount of titrant is a maximum. Since the end-point occurs at pH greater than 7, the most suitable <a href="/wiki/PH_indicator" title="PH indicator">indicator</a> to use is one, like <a href="/wiki/Phenolphthalein" title="Phenolphthalein">phenolphthalein</a>, that changes color at high pH.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2">&#91;2&#93;</a></sup> </p> <h2><span class="mw-headline" id="Weak_bases_and_strong_acids">Weak bases and strong acids</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Neutralization_(chemistry)&amp;action=edit&amp;section=5" title="Edit section: Weak bases and strong acids"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <p>The situation is analogous to that of weak acids and strong bases. </p> <dl><dd>B + H<sub>3</sub>O<sup>+</sup> ⇌ BH<sup>+</sup> + H<sub>2</sub>O</dd></dl> <p><a href="/wiki/Amine" title="Amine">Amines</a> are examples of weak bases. The pH of the neutralized solution depends on the <a href="/wiki/Acid_dissociation_constant" title="Acid dissociation constant">acid dissociation constant</a> of the protonated base, p<i>K</i><sub>a</sub>, or, equivalently, on the base association constant, p<i>K</i><sub>b</sub>. The most suitable indicator to use for this type of titration is one, such as <a href="/wiki/Methyl_orange" title="Methyl orange">methyl orange</a>, that changes color at low pH. </p> <h2><span class="mw-headline" id="Weak_acids_and_weak_bases">Weak acids and weak bases</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Neutralization_(chemistry)&amp;action=edit&amp;section=6" title="Edit section: Weak acids and weak bases"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <p>When a weak acid reacts with an equivalent amount of a weak base, </p> <dl><dd>HA + B ⇌ A<sup>−</sup> + BH<sup>+</sup></dd></dl> <p>complete neutralization does not always occur. The concentrations of the species in equilibrium with each other will depend on the <a href="/wiki/Equilibrium_constant" title="Equilibrium constant">equilibrium constant</a>, <i>K</i>, for the reaction, which is defined as follows: </p> <dl><dd>[A<sup>−</sup>][BH<sup>+</sup>] = <i>K</i> [HA][B].</dd></dl> <p>The neutralization reaction can be considered as the difference of the following two acid dissociation reactions </p> <dl><dd>HA ⇌ H<sup>+</sup> + A<sup>−</sup> <span style="padding-left:3em;">&#160;</span><i>K</i><sub>a,A</sub> = [A<sup>−</sup>][H<sup>+</sup>]/[HA]</dd> <dd>BH<sup>+</sup> ⇌ B + H<sup>+</sup> <span style="padding-left:3em;">&#160;</span><i>K</i><sub>a,B</sub> = [B][H<sup>+</sup>]/[BH<sup>+</sup>]</dd></dl> <p>with the <a href="/wiki/Dissociation_constant" title="Dissociation constant">dissociation constants</a> <i>K</i><sub>a,A</sub> and <i>K</i><sub>a,B</sub> of the acids HA and BH<sup>+</sup>, respectively. Inspection of the reaction quotients shows that </p><p><i>K</i> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac"><span class="tion"><span class="num"><i>K</i><sub>a,A</sub></span><span class="sr-only">/</span><span class="den"><i>K</i><sub>a,B</sub></span></span></span>. </p><p>A weak acid cannot always be neutralized by a weak base, and vice versa. However, for the neutralization of <a href="/wiki/Benzoic_acid" title="Benzoic acid">benzoic acid</a> (<i>K</i><sub>a,A</sub> = 6.5&#160;×&#160;10<sup>−5</sup>) with <a href="/wiki/Ammonia" title="Ammonia">ammonia</a> (<i>K</i><sub>a,B</sub> = 5.6&#160;×&#160;10<sup>−10</sup> for <a href="/wiki/Ammonium" title="Ammonium">ammonium</a>), <i>K</i> = 1.2&#160;×&#160;10<sup>5</sup> &gt;&gt; 1, and more than 99% of the benzoic acid is converted to benzoate. </p> <h2><span class="mw-headline" id="Applications">Applications</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Neutralization_(chemistry)&amp;action=edit&amp;section=7" title="Edit section: Applications"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <p>Chemical <a href="/wiki/Titration" title="Titration">titration</a> methods are used for analyzing acids or bases to determine the unknown <a href="/wiki/Concentration" title="Concentration">concentration</a>. Either a <a href="/wiki/PH_meter" title="PH meter">pH meter</a> or a <a href="/wiki/PH_indicator" title="PH indicator">pH indicator</a> which shows the point of neutralization by a distinct color change can be employed. Simple <a href="/wiki/Stoichiometry" title="Stoichiometry">stoichiometric</a> calculations with the known volume of the unknown and the known volume and <a href="/wiki/Molar_concentration" title="Molar concentration">molarity</a> of the added chemical gives the molarity of the unknown. </p><p>In <a href="/wiki/Water_treatment" title="Water treatment">wastewater treatment</a>, chemical neutralization methods are often applied to reduce the damage that an effluent may cause upon release to the environment. For pH control, popular chemicals include <a href="/wiki/Calcium_carbonate" title="Calcium carbonate">calcium carbonate</a>, <a href="/wiki/Calcium_oxide" title="Calcium oxide">calcium oxide</a>, <a href="/wiki/Magnesium_hydroxide" title="Magnesium hydroxide">magnesium hydroxide</a>, and <a href="/wiki/Sodium_bicarbonate" title="Sodium bicarbonate">sodium bicarbonate</a>. The selection of an appropriate neutralization chemical depends on the particular application. </p><p>There are many uses of neutralization reactions that are acid-alkali reactions. A very common use is <a href="/wiki/Antacid" title="Antacid">antacid</a> tablets. These are designed to neutralize excess <a href="/wiki/Gastric_acid" title="Gastric acid">gastric acid</a> in the stomach (<a href="/wiki/Hydrochloric_acid" title="Hydrochloric acid">HCl</a>) that may be causing discomfort in the stomach or lower esophagus. This can also be remedied by the ingestion of <a href="/wiki/Sodium_bicarbonate" title="Sodium bicarbonate">sodium bicarbonate</a> (NaHCO<sub>3</sub>). Sodium bicarbonate is also commonly used to neutralise acid spills in laboratories, as well as <a href="/wiki/Chemical_burn" title="Chemical burn">acid burns</a>. </p><p>In chemical synthesis of nanomaterials, the heat of neutralization reaction can be used to facilitate the chemical reduction of metal precursors.<sup id="cite_ref-Yin_2016_3-0" class="reference"><a href="#cite_note-Yin_2016-3">&#91;3&#93;</a></sup> </p><p>Also in the digestive tract, neutralization reactions are used when food is moved from the stomach to the intestines. In order for the nutrients to be absorbed through the intestinal wall, an alkaline environment is needed, so the pancreas produce an antacid bicarbonate to cause this transformation to occur. </p><p>Another common use, though perhaps not as widely known, is in fertilizers and control of <a href="/wiki/Soil_pH" title="Soil pH">soil pH</a>. <a href="/wiki/Slaked_lime" class="mw-redirect" title="Slaked lime">Slaked lime</a> (<a href="/wiki/Calcium_hydroxide" title="Calcium hydroxide">calcium hydroxide</a>) or <a href="/wiki/Limestone" title="Limestone">limestone</a> (<a href="/wiki/Calcium_carbonate" title="Calcium carbonate">calcium carbonate</a>) may be worked into soil that is too acidic for plant growth. Fertilizers that improve plant growth are made by neutralizing <a href="/wiki/Sulfuric_acid" title="Sulfuric acid">sulfuric acid</a> (H<sub>2</sub>SO<sub>4</sub>) or <a href="/wiki/Nitric_acid" title="Nitric acid">nitric acid</a> (HNO<sub>3</sub>) with <a href="/wiki/Ammonia" title="Ammonia">ammonia</a> gas (NH<sub>3</sub>), making <a href="/wiki/Ammonium_sulfate" title="Ammonium sulfate">ammonium sulfate</a> or <a href="/wiki/Ammonium_nitrate" title="Ammonium nitrate">ammonium nitrate</a>. These are salts utilized in the fertilizer. </p><p>Industrially, a by-product of the burning of <a href="/wiki/Coal" title="Coal">coal</a>, <a href="/wiki/Sulfur_dioxide" title="Sulfur dioxide">sulfur dioxide</a> gas, may combine with water vapor in the air to eventually produce sulfuric acid, which falls as acid rain. To prevent the sulfur dioxide from being released, a device known as a scrubber gleans the gas from smoke stacks. This device first blows calcium carbonate into the combustion chamber where it decomposes into <a href="/wiki/Calcium_oxide" title="Calcium oxide">calcium oxide</a> (lime) and carbon dioxide. This lime then reacts with the sulfur dioxide produced forming <a href="/wiki/Calcium_sulfite" title="Calcium sulfite">calcium sulfite</a>. A suspension of lime is then injected into the mixture to produce a slurry, which removes the calcium sulfite and any remaining unreacted sulfur dioxide. </p> <h2><span class="mw-headline" id="References">References</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Neutralization_(chemistry)&amp;action=edit&amp;section=8" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-Trummal_3663–3669-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-Trummal_3663–3669_1-0">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1215172403">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a{background-size:contain}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a{background-size:contain}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a{background-size:contain}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#2C882D;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911F}html.skin-theme-clientpref-night .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-night .mw-parser-output .cs1-hidden-error{color:#f8a397}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-os .mw-parser-output .cs1-hidden-error{color:#f8a397}html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911F}}</style><cite id="CITEREFTrummalLippingKaljurandKoppel2016" class="citation journal cs1">Trummal, Aleksander; Lipping, Lauri; Kaljurand, Ivari; Koppel, Ilmar A.; Leito, Ivo (2016-05-06). "Acidity of Strong Acids in Water and Dimethyl Sulfoxide". <i>The Journal of Physical Chemistry A</i>. <b>120</b> (20): 3663–3669. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JPCA..120.3663T">2016JPCA..120.3663T</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1021%2Facs.jpca.6b02253">10.1021/acs.jpca.6b02253</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://www.worldcat.org/issn/1089-5639">1089-5639</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/27115918">27115918</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:29697201">29697201</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=The+Journal+of+Physical+Chemistry+A&amp;rft.atitle=Acidity+of+Strong+Acids+in+Water+and+Dimethyl+Sulfoxide&amp;rft.volume=120&amp;rft.issue=20&amp;rft.pages=3663-3669&amp;rft.date=2016-05-06&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A29697201%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2016JPCA..120.3663T&amp;rft.issn=1089-5639&amp;rft_id=info%3Adoi%2F10.1021%2Facs.jpca.6b02253&amp;rft_id=info%3Apmid%2F27115918&amp;rft.aulast=Trummal&amp;rft.aufirst=Aleksander&amp;rft.au=Lipping%2C+Lauri&amp;rft.au=Kaljurand%2C+Ivari&amp;rft.au=Koppel%2C+Ilmar+A.&amp;rft.au=Leito%2C+Ivo&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANeutralization+%28chemistry%29" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFSteven_S._Zumdahl2009" class="citation book cs1">Steven S. Zumdahl (2009). <span class="id-lock-limited" title="Free access subject to limited trial, subscription normally required"><a rel="nofollow" class="external text" href="https://archive.org/details/chemicalprincipl00zumd_674"><i>Chemical Principles</i></a></span> (6th&#160;ed.). New York: Houghton Mifflin Company. pp.&#160;<a rel="nofollow" class="external text" href="https://archive.org/details/chemicalprincipl00zumd_674/page/n341">319</a>–324.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Chemical+Principles&amp;rft.place=New+York&amp;rft.pages=319-324&amp;rft.edition=6th&amp;rft.pub=Houghton+Mifflin+Company&amp;rft.date=2009&amp;rft.au=Steven+S.+Zumdahl&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fchemicalprincipl00zumd_674&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANeutralization+%28chemistry%29" class="Z3988"></span></span> </li> <li id="cite_note-Yin_2016-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-Yin_2016_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFYinWuLiShi2016" class="citation journal cs1">Yin, Xi; Wu, Jianbo; Li, Panpan; Shi, Miao; Yang, Hong (January 2016). "Self-Heating Approach to the Fast Production of Uniform Metal Nanostructures". <i>ChemNanoMat</i>. <b>2</b> (1): 37–41. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fcnma.201500123">10.1002/cnma.201500123</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=ChemNanoMat&amp;rft.atitle=Self-Heating+Approach+to+the+Fast+Production+of+Uniform+Metal+Nanostructures&amp;rft.volume=2&amp;rft.issue=1&amp;rft.pages=37-41&amp;rft.date=2016-01&amp;rft_id=info%3Adoi%2F10.1002%2Fcnma.201500123&amp;rft.aulast=Yin&amp;rft.aufirst=Xi&amp;rft.au=Wu%2C+Jianbo&amp;rft.au=Li%2C+Panpan&amp;rft.au=Shi%2C+Miao&amp;rft.au=Yang%2C+Hong&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANeutralization+%28chemistry%29" class="Z3988"></span></span> </li> </ol></div> <h2><span class="mw-headline" id="Further_reading">Further reading</span><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Neutralization_(chemistry)&amp;action=edit&amp;section=9" title="Edit section: Further reading"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></h2> <p>Neutralization is covered in most general chemistry textbooks. Detailed treatments may be found in textbooks on analytical chemistry such as </p> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFSkoogWest,_D.M.Holler,_J.F.Crouch,_S.R.2004" class="citation book cs1">Skoog, D.A; West, D.M.; Holler, J.F.; Crouch, S.R. (2004). <i>Fundamentals of Analytical Chemistry</i> (8th&#160;ed.). Thomson Brooks/Cole. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-03-035523-0" title="Special:BookSources/0-03-035523-0"><bdi>0-03-035523-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Fundamentals+of+Analytical+Chemistry&amp;rft.edition=8th&amp;rft.pub=Thomson+Brooks%2FCole&amp;rft.date=2004&amp;rft.isbn=0-03-035523-0&amp;rft.aulast=Skoog&amp;rft.aufirst=D.A&amp;rft.au=West%2C+D.M.&amp;rft.au=Holler%2C+J.F.&amp;rft.au=Crouch%2C+S.R.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANeutralization+%28chemistry%29" class="Z3988"></span> Chapters 14, 15 and 16</li></ul> <p>Applications </p> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFStummMorgan,_J.J.1996" class="citation book cs1">Stumm, W.; Morgan, J.J. (1996). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/waterchemistry00snoerich"><i>Water Chemistry</i></a></span>. New York: Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-05196-9" title="Special:BookSources/0-471-05196-9"><bdi>0-471-05196-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Water+Chemistry&amp;rft.place=New+York&amp;rft.pub=Wiley&amp;rft.date=1996&amp;rft.isbn=0-471-05196-9&amp;rft.aulast=Stumm&amp;rft.aufirst=W.&amp;rft.au=Morgan%2C+J.J.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fwaterchemistry00snoerich&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANeutralization+%28chemistry%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFSnoeyinkJenkins,_D.1980" class="citation book cs1">Snoeyink, V.L.; Jenkins, D. (1980). <i>Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters</i>. New York: Wiley. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-471-51185-4" title="Special:BookSources/0-471-51185-4"><bdi>0-471-51185-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Aquatic+Chemistry%3A+Chemical+Equilibria+and+Rates+in+Natural+Waters&amp;rft.place=New+York&amp;rft.pub=Wiley&amp;rft.date=1980&amp;rft.isbn=0-471-51185-4&amp;rft.aulast=Snoeyink&amp;rft.aufirst=V.L.&amp;rft.au=Jenkins%2C+D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANeutralization+%28chemistry%29" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFMillero2006" class="citation book cs1">Millero, F.J. (2006). <i>Chemical Oceanography</i> (3rd&#160;ed.). London: Taylor and Francis. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8493-2280-4" title="Special:BookSources/0-8493-2280-4"><bdi>0-8493-2280-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Chemical+Oceanography&amp;rft.place=London&amp;rft.edition=3rd&amp;rft.pub=Taylor+and+Francis&amp;rft.date=2006&amp;rft.isbn=0-8493-2280-4&amp;rft.aulast=Millero&amp;rft.aufirst=F.J.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANeutralization+%28chemistry%29" class="Z3988"></span></li> <li>Metcalf &amp; Eddy. <i>Wastewater Engineering, Treatment and Reuse</i>. 4th ed. New York: McGraw-Hill, 2003. 526-532.</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1061467846">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q337120#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb12394748q">France</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb12394748q">BnF data</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4171610-3">Germany</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&amp;local_base=NLX10&amp;find_code=UID&amp;request=987007565617605171">Israel</a></span></li> <li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85091197">United States</a></span></li> <li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="neutralizace"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&amp;local_base=aut&amp;ccl_term=ica=ph615529&amp;CON_LNG=ENG">Czech Republic</a></span></span></li></ul> </div></td></tr></tbody></table></div></div>'
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
'1714466268'